47 research outputs found

    Face Identity Disentanglement via Latent Space Mapping

    Full text link
    Learning disentangled representations of data is a fundamental problem in artificial intelligence. Specifically, disentangled latent representations allow generative models to control and compose the disentangled factors in the synthesis process. Current methods, however, require extensive supervision and training, or instead, noticeably compromise quality. In this paper, we present a method that learn show to represent data in a disentangled way, with minimal supervision, manifested solely using available pre-trained networks. Our key insight is to decouple the processes of disentanglement and synthesis, by employing a leading pre-trained unconditional image generator, such as StyleGAN. By learning to map into its latent space, we leverage both its state-of-the-art quality generative power, and its rich and expressive latent space, without the burden of training it.We demonstrate our approach on the complex and high dimensional domain of human heads. We evaluate our method qualitatively and quantitatively, and exhibit its success with de-identification operations and with temporal identity coherency in image sequences. Through this extensive experimentation, we show that our method successfully disentangles identity from other facial attributes, surpassing existing methods, even though they require more training and supervision.Comment: 17 pages, 10 figure

    Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views

    Full text link
    Object viewpoint estimation from 2D images is an essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of powerful features. Inspired by the growing availability of 3D models, we propose a framework to address both issues by combining render-based image synthesis and CNNs. We believe that 3D models have the potential in generating a large number of images of high variation, which can be well exploited by deep CNN with a high learning capacity. Towards this goal, we propose a scalable and overfit-resistant image synthesis pipeline, together with a novel CNN specifically tailored for the viewpoint estimation task. Experimentally, we show that the viewpoint estimation from our pipeline can significantly outperform state-of-the-art methods on PASCAL 3D+ benchmark

    Bundle Optimization for Multi-aspect Embedding

    Full text link
    Understanding semantic similarity among images is the core of a wide range of computer vision applications. An important step towards this goal is to collect and learn human perceptions. Interestingly, the semantic context of images is often ambiguous as images can be perceived with emphasis on different aspects, which may be contradictory to each other. In this paper, we present a method for learning the semantic similarity among images, inferring their latent aspects and embedding them into multi-spaces corresponding to their semantic aspects. We consider the multi-embedding problem as an optimization function that evaluates the embedded distances with respect to the qualitative clustering queries. The key idea of our approach is to collect and embed qualitative measures that share the same aspects in bundles. To ensure similarity aspect sharing among multiple measures, image classification queries are presented to, and solved by users. The collected image clusters are then converted into bundles of tuples, which are fed into our bundle optimization algorithm that jointly infers the aspect similarity and multi-aspect embedding. Extensive experimental results show that our approach significantly outperforms state-of-the-art multi-embedding approaches on various datasets, and scales well for large multi-aspect similarity measures

    FPNN: Field Probing Neural Networks for 3D Data

    Full text link
    Building discriminative representations for 3D data has been an important task in computer graphics and computer vision research. Convolutional Neural Networks (CNNs) have shown to operate on 2D images with great success for a variety of tasks. Lifting convolution operators to 3D (3DCNNs) seems like a plausible and promising next step. Unfortunately, the computational complexity of 3D CNNs grows cubically with respect to voxel resolution. Moreover, since most 3D geometry representations are boundary based, occupied regions do not increase proportionately with the size of the discretization, resulting in wasted computation. In this work, we represent 3D spaces as volumetric fields, and propose a novel design that employs field probing filters to efficiently extract features from them. Each field probing filter is a set of probing points --- sensors that perceive the space. Our learning algorithm optimizes not only the weights associated with the probing points, but also their locations, which deforms the shape of the probing filters and adaptively distributes them in 3D space. The optimized probing points sense the 3D space "intelligently", rather than operating blindly over the entire domain. We show that field probing is significantly more efficient than 3DCNNs, while providing state-of-the-art performance, on classification tasks for 3D object recognition benchmark datasets.Comment: To appear in NIPS 201

    DiDA: Disentangled Synthesis for Domain Adaptation

    Full text link
    Unsupervised domain adaptation aims at learning a shared model for two related, but not identical, domains by leveraging supervision from a source domain to an unsupervised target domain. A number of effective domain adaptation approaches rely on the ability to extract discriminative, yet domain-invariant, latent factors which are common to both domains. Extracting latent commonality is also useful for disentanglement analysis, enabling separation between the common and the domain-specific features of both domains. In this paper, we present a method for boosting domain adaptation performance by leveraging disentanglement analysis. The key idea is that by learning to separately extract both the common and the domain-specific features, one can synthesize more target domain data with supervision, thereby boosting the domain adaptation performance. Better common feature extraction, in turn, helps further improve the disentanglement analysis and disentangled synthesis. We show that iterating between domain adaptation and disentanglement analysis can consistently improve each other on several unsupervised domain adaptation tasks, for various domain adaptation backbone models

    Synthesizing Training Images for Boosting Human 3D Pose Estimation

    Full text link
    Human 3D pose estimation from a single image is a challenging task with numerous applications. Convolutional Neural Networks (CNNs) have recently achieved superior performance on the task of 2D pose estimation from a single image, by training on images with 2D annotations collected by crowd sourcing. This suggests that similar success could be achieved for direct estimation of 3D poses. However, 3D poses are much harder to annotate, and the lack of suitable annotated training images hinders attempts towards end-to-end solutions. To address this issue, we opt to automatically synthesize training images with ground truth pose annotations. Our work is a systematic study along this road. We find that pose space coverage and texture diversity are the key ingredients for the effectiveness of synthetic training data. We present a fully automatic, scalable approach that samples the human pose space for guiding the synthesis procedure and extracts clothing textures from real images. Furthermore, we explore domain adaptation for bridging the gap between our synthetic training images and real testing photos. We demonstrate that CNNs trained with our synthetic images out-perform those trained with real photos on 3D pose estimation tasks

    PointCNN: Convolution On X\mathcal{X}-Transformed Points

    Full text link
    We present a simple and general framework for feature learning from point clouds. The key to the success of CNNs is the convolution operator that is capable of leveraging spatially-local correlation in data represented densely in grids (e.g. images). However, point clouds are irregular and unordered, thus directly convolving kernels against features associated with the points, will result in desertion of shape information and variance to point ordering. To address these problems, we propose to learn an X\mathcal{X}-transformation from the input points, to simultaneously promote two causes. The first is the weighting of the input features associated with the points, and the second is the permutation of the points into a latent and potentially canonical order. Element-wise product and sum operations of the typical convolution operator are subsequently applied on the X\mathcal{X}-transformed features. The proposed method is a generalization of typical CNNs to feature learning from point clouds, thus we call it PointCNN. Experiments show that PointCNN achieves on par or better performance than state-of-the-art methods on multiple challenging benchmark datasets and tasks.Comment: To be published in NIPS 2018, code available at https://github.com/yangyanli/PointCN

    MixTConv: Mixed Temporal Convolutional Kernels for Efficient Action Recogntion

    Full text link
    To efficiently extract spatiotemporal features of video for action recognition, most state-of-the-art methods integrate 1D temporal convolution into a conventional 2D CNN backbone. However, they all exploit 1D temporal convolution of fixed kernel size (i.e., 3) in the network building block, thus have suboptimal temporal modeling capability to handle both long-term and short-term actions. To address this problem, we first investigate the impacts of different kernel sizes for the 1D temporal convolutional filters. Then, we propose a simple yet efficient operation called Mixed Temporal Convolution (MixTConv), which consists of multiple depthwise 1D convolutional filters with different kernel sizes. By plugging MixTConv into the conventional 2D CNN backbone ResNet-50, we further propose an efficient and effective network architecture named MSTNet for action recognition, and achieve state-of-the-art results on multiple benchmarks.Comment: Non

    GSTO: Gated Scale-Transfer Operation for Multi-Scale Feature Learning in Pixel Labeling

    Full text link
    Existing CNN-based methods for pixel labeling heavily depend on multi-scale features to meet the requirements of both semantic comprehension and detail preservation. State-of-the-art pixel labeling neural networks widely exploit conventional scale-transfer operations, i.e., up-sampling and down-sampling to learn multi-scale features. In this work, we find that these operations lead to scale-confused features and suboptimal performance because they are spatial-invariant and directly transit all feature information cross scales without spatial selection. To address this issue, we propose the Gated Scale-Transfer Operation (GSTO) to properly transit spatial-filtered features to another scale. Specifically, GSTO can work either with or without extra supervision. Unsupervised GSTO is learned from the feature itself while the supervised one is guided by the supervised probability matrix. Both forms of GSTO are lightweight and plug-and-play, which can be flexibly integrated into networks or modules for learning better multi-scale features. In particular, by plugging GSTO into HRNet, we get a more powerful backbone (namely GSTO-HRNet) for pixel labeling, and it achieves new state-of-the-art results on the COCO benchmark for human pose estimation and other benchmarks for semantic segmentation including Cityscapes, LIP and Pascal Context, with negligible extra computational cost. Moreover, experiment results demonstrate that GSTO can also significantly boost the performance of multi-scale feature aggregation modules like PPM and ASPP. Code will be made available at https://github.com/VDIGPKU/GSTO

    CubemapSLAM: A Piecewise-Pinhole Monocular Fisheye SLAM System

    Full text link
    We present a real-time feature-based SLAM (Simultaneous Localization and Mapping) system for fisheye cameras featured by a large field-of-view (FoV). Large FoV cameras are beneficial for large-scale outdoor SLAM applications, because they increase visual overlap between consecutive frames and capture more pixels belonging to the static parts of the environment. However, current feature-based SLAM systems such as PTAM and ORB-SLAM limit their camera model to pinhole only. To compensate for the vacancy, we propose a novel SLAM system with the cubemap model that utilizes the full FoV without introducing distortion from the fisheye lens, which greatly benefits the feature matching pipeline. In the initialization and point triangulation stages, we adopt a unified vector-based representation to efficiently handle matches across multiple faces, and based on this representation we propose and analyze a novel inlier checking metric. In the optimization stage, we design and test a novel multi-pinhole reprojection error metric that outperforms other metrics by a large margin. We evaluate our system comprehensively on a public dataset as well as a self-collected dataset that contains real-world challenging sequences. The results suggest that our system is more robust and accurate than other feature-based fisheye SLAM approaches. The CubemapSLAM system has been released into the public domain.Comment: The paper has been accepted by ACCV 201
    corecore